
Security Assessment

 -Mirolab Audit
CertiK Assessed on Aug 25th, 2024

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

1 Major 1 Mitigated
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

0 Medium
Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

4 Minor 1 Resolved, 3 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

1 Informational 1 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY MIROLAB - AUDIT

CertiK Assessed on Aug 25th, 2024

Mirolab - Audit

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Exchange

ECOSYSTEM

Mirolab WEB 3.0

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 08/25/2024

KEY COMPONENTS

N/A

CODEBASE
https://github.com/mirolabgroup/mainnet-

contracts/

COMMITS
3fe685b94654cebe96cc17e6dac4cc8fc7b6f82d

bfcbb018b1add466804163dc6e72e9c9eed8628b

6
Total Findings

1
Resolved

1
Mitigated

0
Partially Resolved

4
Acknowledged

0
Declined

TABLE OF CONTENTS MIROLAB - AUDIT

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

COR-01 : Centralization Related Risks

COR-02 : Missing Zero Address Validation

MLF-01 : Lack of reasonable limit

MLP-04 : Unsafe Integer Cast

MLR-02 : Unchecked ERC-20 `transfer()`/`transferFrom()` Call

MLZ-01 : `indexedPairs ̀ Not Update When Users Remove Liquidity

Appendix

Disclaimer

TABLE OF CONTENTS MIROLAB - AUDIT

CODEBASE MIROLAB - AUDIT

Repository

https://github.com/mirolabgroup/mainnet-contracts/contracts/core

Commit

3fe685b94654cebe96cc17e6dac4cc8fc7b6f82c
bfcbb018b1add466804163dc6e72e9c9eed8628d

CODEBASE MIROLAB - AUDIT

AUDIT SCOPE MIROLAB - AUDIT

6 files audited 6 files without findings

ID Repo File SHA256 Checksum

MHZ
- contracts/core/MetadataHelper.

sol

cfb667415ef7bda4df885c43f6c3cf29a82

7cdaff348d6586126547c37ae1697

MLF
mirolabgroup/mainnet-
contracts contracts/core/MLFactory.sol

94d412cb84dc2768bce2dc37cfb1da5aa

a3e4b2b37ba64237e8519d7943493bc

MLL contracts/core/MLLibrary.sol
d14adc072ad57dec786e41eb12e127cc

d3a7a796ecc9df42207ce1a1c1de9c0d

MLP contracts/core/MLPair.sol
c707eefbdb93f3372b193e3476bdd1360

4abc8cbde6cb1996d0849d54bb978c4

MLR contracts/core/MLRouter.sol
844e56c111f5fb6463b3fb27f7d24c26b6

82ec8519fe2915d7d9b307aa479567

MLI
contracts/core/MLRouterInterna

.sol

6f01cfa9be93739e53019295ba4ab6e74

8ab43cbfbabeb07de1f36b0319e662b

AUDIT SCOPE MIROLAB - AUDIT

mirolabgroup/mainnet-
contracts

mirolabgroup/mainnet-
contracts

mirolabgroup/mainnet-
contracts

mirolabgroup/mainnet-
contracts

mirolabgroup/mainnet-
contracts

l

APPROACH & METHODS MIROLAB - AUDIT

This report has been prepared for Mirolab to discover issues and vulnerabilities in the source code of the Mirolab

-

 Audit project as well as any contract dependencies that were not part of an officially recognized library. A

comprehensive examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS MIROLAB - AUDIT

FINDINGS MIROLAB - AUDIT

This report has been prepared to discover issues and vulnerabilities for Mirolab - Audit. Through this audit, we have

uncovered 6 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

COR -01 Centralization Related Risks Centralization Major Mitigated

COR-02 Missing Zero Address Validation

ML

Volatile Code Minor Acknowledged

F-01 Lack Of Reasonable Limit Logical Issue Minor Acknowledged

MLP-04 Unsafe Integer Cast
Incorrect

Calculation
Minor Acknowledged

MLR-02 Unchecked ERC-20 transfer() /
transferFrom() Call

Volatile Code Minor Resolved

MLZ-01
indexedPairs Not Update When Users

Remove Liquidity
Logical Issue Informational Acknowledged

FINDINGS MIROLAB - AUDIT

6
Total Findings

0
Critical

1
Major

0
Medium

4
Minor

1
Informational

COR-01 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization Major MLFactory.sol (3fe68 - 11/30); MLPair.sol (3fe68 - 11/30) Mitigated

Description

In the contract MLFactory the role feeToSetter has authority over the functions shown in the diagram below.

Any compromise to the feeToSetter account may allow the hacker to take advantage of this authority.

set the address of feeTo

set swapFee

set protocol fee factor

set the address of pendingFeeToSetter , who can accept the feeToSetter role

set swap fee point override for a pair

Function External Calls

Authenticated Role

Function State Variables

Function State Variables

Function State Variables

Function State Variables

setSwapFeeOverride MLPair.setSwapFeeOverride

feeToSetter

setFeeToSetter

setSwapFee

setFeeTo

setProtocolFeeFactor

pendingFeeToSetter

swapFee

feeTo

protocolFeeFactor

In the contract MLFactory the role pendingFeeToSetter has authority over the functions shown in the diagram below.

COR-01 MIROLAB - AUDIT

accept the feeToSetter role

Authenticated Role Function State Variables

pendingFeeToSetter acceptFeeToSetter feeToSetter

In the contract MLPair the role factory has authority over the functions shown in the diagram below.

Authenticated Role Function State Variables

factory setSwapFeeOverride swapFeeOverride

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level

of decentralization, which in most cases cannot be resolved entirely at the present stage.

In

general,

we

strongly

 recommend centralized

privileges

or

roles

in

the

protocol

be

improved

 via a decentralized mechanism or smart-contract- based accounts with

enhanced

security

practices,

e.g.,

multisignature

 wallets. Indicatively, here are some feasible

suggestions

that

would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short

Term:

Timelock

and

Multi

sign

(⅔,

⅗)

combination

mitigate

by

delaying

the

sensitive

operation

and

avoiding

a

single

point

of

key management

failure.

Time-lock

with

reasonable

latency

,

for

awareness

on

privileged

operations;

AND

Assignment

of

privileged

roles

to

multi-signature

wallets

to

prevent

a

single

point

of

failure

due

to

the

private

key compromised;

AND

A

medium/blog

link

for

sharing

the

timelock

contract

and

multi-signers

addresses

information

with

the

public audience.

Long Term:

COR-01 MIROLAB - AUDIT

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency , for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove this functionality.

Alleviation

[MIROLAB FINANCE TEAM 08/20/2024]:

Considering that our DAO is currently in the process of maturing, we have opted for the Short-Term solution

Time-lock with reasonable latency: We have instituted a time lock to allow for awareness of privileged

operations.

Privileged roles assigned to multi-signature wallets: To mitigate the risk of a single point of failure resulting

from compromised private keys, we have assigned privileged roles to multi-signature wallets.

All relevant information has been publicly disclosed in our documentation.

 The

privileged

roles

of

the

factory,

feeToSetter

and

pendingFeeToSetter,

have

been

transferred

to

the

timelock.

Signer

1:

mlsync:0xe9D5791Be827F092109C41F5eBFD48FF66d21b92

COR-01 MIROLAB - AUDIT

Signer 2: mlsync:0x67cd008DB78a667A8983e8196F2a2C7D38bD6744

Signer 3: mlsync:0xA74A66219a08D6346c512c50a5d0648a65a9183c

Signer 4: mlsync:0x4700347E98C9c8A0c63a865575dFf34088C473d2

Signer 5: mlsync:0x13BD7a61b46950fF0e9b41571Dc4C503eE854041

It requires 3 out of 5 signers to sign the transaction to execute.

COR-02 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile

Code
Minor

MLFactory.sol (3fe68 - 11/30): 34, 69, 86; MLPair.sol (3fe68 - 11/30):

53, 54; MLRouter.sol (3fe68 - 11/30): 19, 20
Acknowledged

Description

Addresses are not validated before assignment or external calls, potentially allowing the use of zero addresses and leading

to unexpected behavior or vulnerabilities. For example, transferring tokens to a zero address can result in a permanent loss

of those tokens.

34 feeToSetter = _feeToSetter;

_feeToSetter is not zero-checked before being used.

69 feeTo = _feeTo;

_feeTo is not zero-checked before being used.

86 pendingFeeToSetter = _feeToSetter;

_feeToSetter is not zero-checked before being used.

53 token0 = _token0;

_token0 is not zero-checked before being used.

54 token1 = _token1;

_token1 is not zero-checked before being used.

19 factory = _factory;

COR-02 MIROLAB - AUDIT

_factory is not zero-checked before being used.

20 WETH = _WETH;

_WETH is not zero-checked before being used.

Recommendation

It is recommended to add a zero-check for the passed-in address value to prevent unexpected errors.

Alleviation

[MIROLAB FINANCE TEAM 08/20/2024]

We thank Certik for identifying these volatile codes. After a thorough investigation of this issue, we found that:

MLFactory.sol: 34 → This volatile code was used only once during the initial deployment of the contract.

Consequently, it does not pose any risks, considering that our core contracts have been deployed and used

for several months. Essentially, this does not impact the safety of the contracts or user funds.

MLFactory.sol: 69 → The volatile code at line 69 can only be executed by the FeeToSetter address, currently set as

the timelock controller under the multisig wallet. The likelihood of setting the zero-address as feeTo is very low.

Even if such an event occurs, the FeeToSetter can easily rectify this mistake without causing any issues to the

operations of the other involved contracts or risking user funds. Essentially, this does not affect the safety of the

contracts

or

user funds.

MLFactory.sol: 86 → Similar to the issue mentioned at line 69, this volatile code can only be executed by the

FeeToSetter address. The probability of setting the zero-address as FeeToSetter is minimal. In the rare event of

such a mistake, it will not compromise user funds or disrupt the operations of the other involved contracts. The only

consequence is the inability to set the swap fee, equivalent to the feeToSetter role renouncement. Essentially, this

does not pose a risk to the safety of the contracts or user funds.

MLPair.sol: 53, 54 → These lines of code are within the constructor function and are used only once by the

MLFactory to create and initialize the pair. At that moment, there is no existing liquidity in this pool as it is being

created. Therefore, it does not introduce any risk to the safety of the contracts or user funds.

MLRouter.sol: 19, 20 → Similarly, these two lines of code are within the constructor function of the MLRouter

contract. Essentially, this does not impact the safety of the contracts or user funds.

COR-02 - AUDITMIROLAB

MLF-01 LACK OF REASONABLE LIMIT

Category Severity Location Status

Logical Issue Minor MLFactory.sol (3fe68 - 11/30): 80 Acknowledged

Description

The setProtocolFeeFactor() function allows the feeToSetter to set the minimum protocolFeeFactor as 2, which

means half of the fee will be charged and sent to the _feeTo .

 function _getFeeLiquidity(uint _totalSupply, uint _rootK2, uint _rootK1, uint8

_feeFactor) private pure returns (uint) {

 uint numerator = _totalSupply * (_rootK2 - _rootK1);

 uint denominator = (_feeFactor - 1) * _rootK2 + _rootK1;

 return numerator / denominator;

 }

Recommendation

We would like to confirm with the client whether the current implemenation aligns with the project design.

Alleviation

[MIROLAB FINANCE TEAM 08/20/2024]

We hereby confirm that the current implementation aligns with our project design.

MLF-01 MIROLAB - AUDIT

MLP-04 UNSAFE INTEGER CAST

Category Severity Location Status

Incorrect Calculation Minor MLPair.sol (3fe68 - 11/30): 109, 110, 118, 119 Acknowledged

Description

Type casting refers to changing an variable of one data type into another. The code contains an unsafe cast between integer

types, which may result in unexpected truncation or sign flipping of the value.

109 principal0: uint112(liquidity * _reserve0 / _totalSupply),

Casted expression liquidity * _reserve0 / _totalSupply has estimated range [0,

115792089237316195423570985008687907853269984665640564039457584007913129639935] but target type

uint112 has range [0, 5192296858534827628530496329220095].

110 principal1: uint112(liquidity * _reserve1 / _totalSupply),

Casted expression liquidity * _reserve1 / _totalSupply has estimated range [0,

115792089237316195423570985008687907853269984665640564039457584007913129639935] but target type

uint112 has range [0, 5192296858534827628530496329220095].

118 principal0: uint112(liquidity * _reserve0 / _totalSupply),

Casted expression liquidity_scope_0 * _reserve0 / _totalSupply has estimated range [0,

115792089237316195423570985008687907853269984665640564039457584007913129639935] but target type

uint112 has range [0, 5192296858534827628530496329220095].

119 principal1: uint112(liquidity * _reserve1 / _totalSupply),

Casted expression liquidity_scope_0 * _reserve1 / _totalSupply has estimated range [0,

115792089237316195423570985008687907853269984665640564039457584007913129639935] but target type

uint112 has range [0, 5192296858534827628530496329220095].

Recommendation

It is recommended to check the bounds of integer values before casting. Alternatively, consider using the SafeCast library

from OpenZeppelin to perform safe type casting and prevent undesired behavior.

MLP-04 MIROLAB - AUDIT

Reference: https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/cf86fd9962701396457e50ab0d6cc78aa29a5ebc/contracts/utils/math/SafeCast.sol

Alleviation

[MIROLAB FINANCE TEAM 08/20/2024]

MLPair.sol: 109, 110, 118, 119 → In reality, for an unexpected truncation to occur due to these unsafe integer castings,

the total liquidity of a pool must reach an unrealistic value.

To demonstrate this, let’s consider ETH-USDC pool of our DEX at the address:

currently

valued

at 557K USD, the total supply of LP token is _totalSupply=5041968077308680, corresponding

_reserve0=279126019242, _reserve1=118709123971826255802 (all these values are readable on chain). Thus,

the maximum value of the variable principal0=279126019242 and maximum value of

principal1=118709123971826255802. These two value is significantly below the limit of uint112 type, which is

5192296858534827628530496329220095 or 5.2*10^33)

Additionally, for this unsafe integer cast issue to occur, the variables _reserve0 and _reserve1 need to a reach a

minimum amount of 5.2*10^15 tokens in a liquidity pool, assuming that this token has 18 decimals. This number is

unreasonably large for normal tokens.

Hence, we think that the conversions to unint112 in MLPair.sol: 109, 110, 118, 119 won’t cause any issues in reality.

MLP-04 MIROLAB - AUDIT

MLR-02 UNCHECKED ERC-20 transfer() / transferFrom() CALL

Category Severity Location Status

Volatile Code Minor MLRouterInternal.sol (3fe68 - 11/30): 129 Resolved

Description

The return values of the transfer() and transferFrom() calls in the smart contract are not checked. Some ERC-20

tokens' transfer functions return no values, while others return a bool value, they should be handled with care. If a function

returns false instead of reverting upon failure, an unchecked failed transfer could be mistakenly considered successful in

the contract.

129 IMLPair(pair).transferFrom(msg.sender, pair, liquidity);

Recommendation

It is advised to use the OpenZeppelin's SafeERC20.sol implementation to interact with the transfer() and

transferFrom() functions of external ERC-20 tokens. The OpenZeppelin implementation checks for the existence of a

return value and reverts if false is returned, making it compatible with all ERC-20 token implementations.

Alleviation

[MIROLAB FINANCE TEAM 08/20/2024]

Issue acknowledged. The IMLPair utilizes the transfer and transferFrom functions from the ERC20.sol contract (located

within the subfolder libraries/token/ERC20.sol). It's important to note that the transfer and transferFrom functions within this

ERC20.sol always either return true or throw an error. Consequently, this does not pose an issue.

MLR-02 MIROLAB - AUDIT

MLZ-01 indexedPairs NOT UPDATE WHEN USERS REMOVE

LIQUIDITY

Category Severity Location Status

Logical Issue Informational MLRouter.sol (3fe68 - 11/30): 134 Acknowledged

Description

We note that the variable indexedPairs is used to keep track of users who add liquidity, but does not remove the user from

the variable indexedPairs after the user removes liquidity completely.

Recommendation

We would like to confirm with the client if the current implementation aligns with the original project design.

Alleviation

The team acknowledged this issue and they will leave it as it is for now.

MLZ-01 MIROLAB - AUDIT

APPENDIX MIROLAB - AUDIT

Finding Categories

Checksum

Calculation

Method

The

"Checksum"

field

in

the

"Audit

Scope"

section

is

calculated

as

the

SHA-256

(Secure

Hash

Algorithm

2

with

digest

size

of

256

bits)

digest

of

the

content

of

each

file

hosted

in

the

listed

source

repository

under

the

specified

commit.

The

result

is

hexadecimal

encoded

and

is

the

same

as

the

output

of

the

Linux

"sha256sum"

command

against

the

target

file.

APPENDIX MIROLAB - AUDIT

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This

report represents

an

extensive

assessing

process

intending

to

help

our

customers

increase

the

quality

of

their

code

while

reducing the

high

level

of

risk

presented

by

cryptographic

tokens

and

blockchain

technology.

CertiK’s

position

is

that

each

company and

individual

are

responsible

for

their

own

due

diligence

and

continuous

security.

CertiK ’s

goal

is

to

help

reduce

the

attack vectors

and

the

high

level

of

variance

associated

with

utilizing

new

and

consistently

changing

technologies,

and

in

no

way claims

any

guarantee

of

security

or

functionality

of

the

technology

we

agree

to

analyze.

The

assessment

reports

could

include

false

positives,

false

negatives,

and

other

unpredictable results.

The

services

may

access,

and

depend

upon,

multiple

layers

of

third-parties.

ALL

SERVICES,

THE

LABELS,

THE

ASSESSMENT

REPORT,

WORK

PRODUCT,

OR

OTHER

MATERIALS,

OR

ANY

PRODUCTS

OR

RESULTS

OF

THE

USE

THEREOF

ARE

PROVIDED

“AS

IS”

AND

“AS

AVAILABLE”

AND

WITH

ALL

FAULTS

AND

DEFECTS

WITHOUT

WARRANTY

OF

ANY

KIND.

TO

THE

MAXIMUM

EXTENT

PERMITTED

UNDER

APPLICABLE

LAW,

CERTIK

HEREBY

DISCLAIMS

ALL

WARRANTIES,

WHETHER

EXPRESS,

IMPLIED,

STATUTORY,

OR

OTHERWISE

WITH

RESPECT

TO

THE

SERVICES,

ASSESSMENT

REPORT,

OR

OTHER

MATERIALS.

WITHOUT

LIMITING

THE

FOREGOING,

CERTIK

SPECIFICALLY

DISCLAIMS

ALL

IMPLIED

WARRANTIES

OF

MERCHANTABILITY,

FITNESS

FOR

A

PARTICULAR

PURPOSE,

TITLE

AND

NON-INFRINGEMENT,

AND

ALL

WARRANTIES

ARISING

FROM

COURSE

OF

DEALING,

USAGE,

OR

TRADE

PRACTICE.

WITHOUT

LIMITING

THE

FOREGOING,

CERTIK

MAKES

NO

WARRANTY

OF

ANY

KIND

THAT

THE

SERVICES,

THE

LABELS,

THE

ASSESSMENT

REPORT,

WORK

PRODUCT,

OR

OTHER

MATERIALS,

OR

ANY

PRODUCTS

OR

RESULTS

OF

THE

USE

THEREOF,

WILL

MEET

CUSTOMER’S

OR

ANY

OTHER

PERSON’S

REQUIREMENTS,

ACHIEVE

ANY

INTENDED

RESULT,

BE

COMPATIBLE

OR

WORK

WITH

ANY

SOFTWARE,

SYSTEM,

OR

OTHER

SERVICES,

OR

BE

SECURE,

ACCURATE,

COMPLETE,

FREE

OF

HARMFUL

CODE,

OR

ERROR-FREE.

WITHOUT

LIMITATION

TO

THE

FOREGOING,

CERTIK

PROVIDES

NO

WARRANTY

OR

DISCLAIMER MIROLAB - AUDIT

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

ALL

THIRD-PARTY

MATERIALS

ARE

PROVIDED

“AS

IS”

AND

ANY

REPRESENTATION

OR

WARRANTY

OF

OR

CONCERNING

ANY

THIRD-PARTY

MATERIALS

IS

STRICTLY

BETWEEN

CUSTOMER

AND

THE

THIRD-PARTY

OWNER

OR

DISTRIBUTOR

OF

THE

THIRD-PARTY

MATERIALS.

THE

SERVICES,

ASSESSMENT

REPORT,

AND

ANY

OTHER

MATERIALS

HEREUNDER

ARE

SOLELY

PROVIDED

TO

CUSTOMER

AND

MAY

NOT

BE

RELIED

ON

BY

ANY

OTHER

PERSON

OR

FOR

ANY

PURPOSE

NOT

SPECIFICALLY

IDENTIFIED

IN

THIS

AGREEMENT,

NOR

MAY

COPIES

BE

DELIVERED

TO,

ANY

OTHER

PERSON

WITHOUT

CERTIK’S

PRIOR

WRITTEN

CONSENT

IN

EACH

INSTANCE.

NO

THIRD

PARTY

OR

ANYONE

ACTING

ON

BEHALF

OF

ANY

THEREOF,

SHALL

BE

A

THIRD

PARTY

OR

OTHER

BENEFICIARY

OF

SUCH

SERVICES,

ASSESSMENT

REPORT,

AND

ANY

ACCOMPANYING

MATERIALS

AND

NO

SUCH

THIRD

PARTY

SHALL

HAVE

ANY

RIGHTS

OF

CONTRIBUTION

AGAINST

CERTIK

WITH

RESPECT

TO

SUCH

SERVICES,

ASSESSMENT

REPORT,

AND

ANY

ACCOMPANYING

MATERIALS.

THE

REPRESENTATIONS

AND

WARRANTIES

OF

CERTIK

CONTAINED

IN

THIS

AGREEMENT

ARE

SOLELY

FOR

THE

BENEFIT

OF

CUSTOMER.

ACCORDINGLY,

NO

THIRD

PARTY

OR

ANYONE

ACTING

ON

BEHALF

OF

ANY

THEREOF,

SHALL

BE

A

THIRD

PARTY

OR

OTHER

BENEFICIARY

OF

SUCH

REPRESENTATIONS

AND

WARRANTIES

AND

NO

SUCH

THIRD

PARTY

SHALL

HAVE

ANY

RIGHTS

OF

CONTRIBUTION

AGAINST

CERTIK

WITH

RESPECT

TO

SUCH

REPRESENTATIONS

OR

WARRANTIES

OR

ANY

MATTER

SUBJECT

TO

OR

RESULTING

IN

INDEMNIFICATION

UNDER

THIS

AGREEMENT

OR

OTHERWISE.

FOR

AVOIDANCE

OF

DOUBT,

THE

SERVICES,

INCLUDING

ANY

ASSOCIATED

ASSESSMENT

REPORTS

OR

MATERIALS,

SHALL

NOT

BE

CONSIDERED

OR

RELIED

UPON

AS

ANY

FORM

OF

FINANCIAL,

TAX,

LEGAL,

REGULATORY,

OR

OTHER

ADVICE.

DISCLAIMER MIROLAB - AUDIT

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Mirolab - Audit Security Assessment CertiK Assessed on Aug 25th, 2024 Copyright © CertiK

